PID的数学模型
在工业应用中PID及其衍生算法是应用Zui广泛的算法之一,是当之无愧的wanneng算法,如果能够熟练掌握PID算法的设计与实现过程,对于一般的研发人员来讲,应该是足够应对一般研发问题了,而难能可贵的是,在很多控制算法当中,PID控制算法又是Zui简单,Zui能体现反馈思想的控制算法,可谓经典中的经典。经典的未必是复杂的,经典的东西常常是简单的,是Zui简单的。PID算法的一般形式:
PID算法通过误差信号控制被控量,而控制器本身就是比例、积分、微分三个环节的加和。这里我们规定(在t时刻):
1.输入量为
2.输出量为
3.偏差量为
PID算法的数字离散化
假设采样间隔为T,则在第K个T时刻:
偏差=
积分环节用加和的形式表示,即
微分环节用斜率的形式表示,即
PID算法离散化后的式子:
则可表示成为:
其中式中:
比例参数 :控制器的输出与输入偏差值成比例关系。系统一旦出现偏差,比例调节立即产生调节作用以减少偏差。特点:过程简单快速、比例作用大,可以加快调节,减小误差;使系统稳定性下降,造成不稳定,有余差。
积分参数 :积分环节主要是用来消除静差,所谓静差,就是系统稳定后输出值和设定值之间的差值,积分环节实际上就是偏差累计的过程,把累计的误差加到原有系统上以抵消系统造成的静差。
微分参数 :微分信号则反应了偏差信号的变化规律,或者说是变化趋势,根据偏差信号的变化趋势来进行超前调节,从而增加了系统的快速性。
PID的基本离散表示形式如上。目前的这种表述形式属于位置型PID,一种表述方式为增量式PID,由上述表达式可以轻易得到:
那么:
上式就是离散化PID的增量式表示方式,由公式可以看出,增量式的表达结果和Zui近三次的偏差有关,这样就大大提高了系统的稳定性。需要注意的是Zui终的输出结果应该为:输出量 =
+ 增量调节值
目的
PID 的重要性应该无需多说了,这个控制领域的应用Zui广泛的算法了.本篇文章的目的是希望通过一个例子展示算法过程,并解释以下概念:
(1)简单描述何为PID, 为何需要PID,PID 能达到什么作用。
(2)理解P(比例环节)作用:基础比例环节。
缺点: 产生稳态误差.
疑问: 何为稳态误差 为什么会产生稳态误差.
(3)理解I(积分环节)作用:消除稳态误差.
缺点: 增加超调
疑问: 积分为何能消除稳态误差?
(4) 理解D(微分环节)作用:加大惯性响应速度,减弱超调趋势
疑问: 为何能减弱超调
(5)理解各个比例系数的作用
何为PID以及为何需要PID?
以下即PID 控制的整体框图,过程描述为:
设定一个输出目标,反馈系统传回输出值,如与目标不一致,则存在一个误差,PID根据此误差调整输入值,直至输出达到设定值.
疑问:
那么我们为什么需要PID 呢,比如我控制温度,我不能监控温度值,温度值一到就停止吗?
这里必须要先说下我们的目标,因为我们所有的控制无非就是想输出能够达到我们的设定,即如果我们设定了一个目标温度值,那么我们想要一个什么样的温度变化呢.
比如设定目标温度为30度,目标无非是希望达到图1 希望其能够快速没有抖动的达到30度.
那这样大家应该就明白,如果使用温度一到就停止的办法,当然如果要求不高可能也行,当肯定达不到图1这样的要求,因为温度到了后余温也会让温度继续升高.温度自身也会通过空气散热的.
图 系统输出的响应目标
我们需要PID的原因无非就是普通控制手段没有办法使输出快速稳定的到达设定值。